Parenteral Nutrition Formula Calculations and Monitoring Protocols

1 gr Dextrose $\longrightarrow 3.4 \mathrm{kcal}$
1 gr Lipid
1 gr A.A
$\longrightarrow \quad 4 \mathrm{Kcal}$

Evaluation of a PN Order

PN 15\% dextrose, 4.5\% a.a. 3\% lipid @ 100 cc/hour for 24 hours.

- Total volume $=2400 \mathrm{ml}$
- Dextrose: $15 \mathrm{~g} / 100 \mathrm{ml} * 2400 \mathrm{ml}=360 \mathrm{~g}$
- $360 \mathrm{~g} \mathrm{x} 3.4 \mathrm{kcal} / \mathrm{gram}=1224$ kcals
- Lipids $3 \mathrm{~g} / 100 \mathrm{ml} \times 2400 \mathrm{ml}=72 \mathrm{~g}$ lipids
- 72 x 10 kcals/gram = 720 kcals

Evaluation of a PN Order

- Amino acids: 4.5 grams $/ 100 \mathrm{ml} * 2400 \mathrm{ml}$
$=108$ grams protein
- 108 x 4 = 432 kcals
- $1224+720+432=2376$ total kcals
- Lipid is 30% of total calories
- Dextrose is 51.5% of total calories
- Protein is $\mathbf{1 8 \%}$ of total calories

Example Calculation 2-in-1

Nutrient Needs / day:
Kcals: 1800. Protein: 88 g. Fluid: 2000 cc/ day 1800 kcal x $30 \%=540$ kcal from Lipid (10\%):
$-540 \mathrm{kcal} / 1.1(\mathrm{kcal} / \mathrm{cc})=491 \mathrm{cc} / 24 \mathrm{hr}=$ $20 \mathrm{cc} / \mathrm{hr} 10 \%$ lipid (round to 480 ml)

- Remaining fluid needs: 2000cc -480cc = 1520 cc

Protein Calculations

Remaining fluid needs: $2000 \mathrm{cc}-480 \mathrm{cc}=$ 1520cc
Protein: $88 \mathrm{~g} / 1520 \mathrm{cc} \times 100=$ 5.8% amino acid solution
88 g . x $4 \mathrm{kcal} / \mathrm{gm}=352 \mathrm{kcals}$ from protein

- Remaining kcal needs: 1800 - (528 + 352) $=920 \mathrm{kcal}$

Dextrose Concentration

- Remaining kcal needs: $1800-(528+352)$ $=920 \mathrm{kcal}$
- $920 \mathrm{kcal} / 3.4 \mathrm{kcal} / \mathrm{g}=270 \mathrm{~g}$ dextrose
- $270 \mathrm{~g} / 1520$ cc x $100=17.7 \%$ dextrose solution
Rate of Amino Acid / Dextrose:
- $1520 \mathrm{cc} / 24 \mathrm{hr}=63 \mathrm{cc} / \mathrm{hr}$

TPN recommendation: Suggest two-in-one PN 17.7\% dextrose, 5.8\% a.a. @ $63 \mathrm{cc} / \mathrm{hr}$ with $\mathbf{1 0} \%$ lipids piggyback @ 20 cc/hr

Re-check calculations

TPN recommendation: Suggest two-in-one PN 17.7 \% dextrose, 5.8\% a.a. @ 63 cc/hr with 10\% lipids piggyback @ 20 cc/hr $63 \mathrm{cc} / \mathrm{hr} \times 24=1512 \mathrm{ml}$ $1512 *(.177)=268$ g D X 3.4 kcals $=911$ kcals $1512 *(0.058)=88 \mathrm{~g}$ a.a. x 4 kcals $=352$ $20 \mathrm{cc} / \mathrm{hr}$ lipids $\% 24=480 \% 1.1 \mathrm{kcals} / \mathrm{cc}=\underline{\mathbf{5 2 8}}$ 1791

Sample Calculation 3-in-1

- Nutrient Needs / day:
- Kcals: 1800, Protein: 88 g Fluid: 2000 cc
- Lipid : 1800 kcal x 30\% = 540 kcal
$-540 \mathrm{kcal} / 10 \mathrm{kcal}$ per gram $=54 \mathrm{~g}$
$-54 \mathrm{~g} / 2000$ cc x $100=2.7 \%$ lipid
- Protein: 88 g / 2000 cc x $100=$ 4.4% amino acids
- 88 g x $4=352$ kcals from protein

Sample Calculation 3-in-1 (cont)

Dextrose: 908 kcal (1800-540-352)

- 908/3.4 kcal/g = 267 g dextrose
$-267 \mathrm{~g} / 2000 \mathrm{cc} \times 100=$
13.4 \% dextrose solution
- Rate of infusion: Amino Acid / Dextrose/Lipid: $2000 \mathrm{cc} / 24 \mathrm{hr}=\mathbf{8 3}$ cc/hr.
- TPN prescription: Suggest TNA 13.4\% dextrose, 4.4% amino acids, 2.7% lipids at 83 cc/hour provides 88 g. protein, 1800 kcals, 2000 ml fluid

Acute Inpatient PN Monitoring

Parameter	Daily	Frequency 3 3/week	Weekly
Glucose	Initially	\checkmark	
Electrolytes	Initially	\checkmark	
Phos, Mg, BUN, Cr, Ca		Initially	\checkmark
TG			\checkmark
Temperature	\checkmark		
Bili, LFTs		Initially	\checkmark

Inpatient Monitoring PN

Parameter	Daily	Frequency Weekly	PRN
Body Weight	Initially	$\sqrt{ }$	
Nitrogen Balance		Initially	\checkmark
HGB, HCT		$\sqrt{ }$	
Catheter Site	\sqrt{l}		
Lymphocyte Count	Initially		\checkmark
Clinical Status			\checkmark
PRN : Pro - Re - Nata $=$ when necessary			

Monitoring: Nutrition Serum Hepatic Proteins

Parameter
Albumin
$\frac{\text { Time }}{\text { 19 days }}$
Transferrin
9 days

Prealbumin
2-3 days

Retinol Binding Protein
~12 hours

Osmolarity Quick Calculation

To calculate solution osmolarity:

- (A). multiply grams of dextrose per liter by 5
-(B). multiply grams of protein per liter by 10
-(C). add A \& B
- add 300 to 400 to the answer from "C". (Vitamins and minerals contribute about 300 to $400 \mathrm{mOsm} / \mathrm{L}$.)

Is the solution compoundable?

- TPN is compounded using 10% or 15% amino acids, 70% dextrose, and 20% lipids
- The TPN prescription must be compoundable using standard base solutions
- This becomes an issue if the patient is on a fluid restriction

Is the Solution Compoundable?

What is the minimum volume to compound the PN prescription?
Example: 75 g AA
350 g dextrose
50 g lipid
2000 ml fluid restriction

AA: $\frac{10 \mathrm{~g}}{100 \mathrm{ml}}=\frac{75 \mathrm{~g}}{\mathrm{X} \mathrm{ml}}=750 \mathrm{ml}$ using $10 \% \mathrm{AA}$
OR divide 75 grams by the \% base solution, $75 \mathrm{~g} / .10$

Is the solution compoundable?

Dextrose: $\frac{70 \mathrm{~g}}{100 \mathrm{ml}}=\frac{350 \mathrm{~g}}{\mathrm{Xml}} \quad \mathrm{x}=\mathbf{5 0 0 \mathrm { ml }}$
Lipid: $\underset{100 \mathrm{ml}}{\underline{20 \mathrm{~g}}}=\frac{50 \mathrm{~g}}{\mathrm{xml}} \quad \mathrm{X}=250 \mathrm{ml}$
Total volume $=750 \mathrm{ml}$ AA +500 ml D +250 ml lipid + 100 ml (for electrolytes/trace) $=\mathbf{1 6 0 0} \mathbf{~ m l}$ (minimum volume to compound solution)

Tip: Substrates should easily fit in $1 \mathrm{kcal} / \mathrm{ml}$ solutions

Is this solution compoundable?

PN prescription:

AA $\quad 125 \mathrm{~g}$
D $\quad 350 \mathrm{~g}$
Lipid 50 g
Fluid restriction 1800 ml/day

Is this solution compoundable?

AA: $\frac{10 \mathrm{~g}}{100 \mathrm{ml}}=\frac{125 \mathrm{~g}}{\mathrm{X} \mathrm{ml}}=\mathbf{1 2 5 0} \mathbf{~ m l}(125 / .10)$
Dextrose: $\frac{70 \mathrm{~g}}{100 \mathrm{ml}}=\frac{350 \mathrm{~g}}{\mathrm{X} \mathrm{ml}} \quad \mathrm{x}=500 \mathrm{ml}(350 / .70)$
Lipid: $\quad \frac{\underline{20 g}}{100 \mathrm{ml}}=\underline{\mathrm{x} \mathrm{ml}} \underset{\mathbf{5 0 g}}{ } \quad \mathrm{X}=\mathbf{2 5 0 \mathrm { ml }}(50 / .20)$
Total volume $=1250 \mathrm{ml}$ AA $+500 \mathrm{ml} \mathrm{D}+250 \mathrm{ml}$ lipid +100 $\mathrm{ml}($ for electrolytes $/$ trace $)=\mathbf{2 1 0 0} \mathbf{~ m l}$ (minimum volume to compound solution)
Verdict: not compoundable in 1800 ml .
Action: reduce dextrose content or use 15\% AA base solution if available (could deliver protein in 833 ml of 15\%)

