Parenteral Nutrition Formula Calculations and Monitoring Protocols

 $1 \text{ gr Dextrose} \longrightarrow 3.4 \text{ kcal}$ $1 \text{ gr Lipid} \longrightarrow 10 \text{ kcal}$ $1 \text{ gr A.A} \longrightarrow 4 \text{ Kcal}$

Evaluation of a PN Order

- PN 15% dextrose, 4.5% a.a. 3% lipid
 - @ 100 cc/hour for 24 hours.
- ♦ Total volume = 2400 ml
- Dextrose: 15g/100 ml * 2400 ml = 360 g
- ◆ 360 g x 3.4 kcal/gram = **1224 kcals**
- Lipids 3 g/100 ml x 2400 ml = 72 g lipids
- ♦ 72 x 10 kcals/gram = 720 kcals

Evaluation of a PN Order

Amino acids: 4.5 grams/100 ml * 2400 ml = 108 grams protein
108 x 4 = 432 kcals

- ◆ <u>1224 + 720 + 432 = 2376 total kcals</u>
- Lipid is 30% of total calories
- ♦ Dextrose is 51.5% of total calories
- Protein is 18% of total calories

Example Calculation 2-in-1 Nutrient Needs / day: Kcals: 1800. Protein: 88 g. Fluid: 2000 cc/ day 1800 kcal x 30% = 540 kcal fromLipid (10%): -540 kcal/1.1 (kcal/cc) = **491** cc/24 hr = **<u>20 cc/hr 10% lipid (round to 480 ml)</u>** ◆ Remaining fluid needs: 2000cc - 480cc = **1520 cc**

Protein Calculations

Remaining fluid needs: 2000cc - 480cc = 1520cc

Protein: 88 g / 1520 cc x 100 = 5.8% amino acid solution

- 88 g. x 4 kcal/gm =352 kcals from protein
- Remaining kcal needs: 1800 (528 + 352)
 = 920 kcal

Dextrose Concentration

- ♦ Remaining kcal needs: 1800 (528 + 352) = 920 kcal
- \diamond 920 kcal/3.4 kcal/g = 270 g dextrose
- ♦ 270 g / 1520 cc x 100 = 17.7% dextrose solution
- Acid / Dextrose:
- ◆ <u>1520 cc / 24hr = 63 cc/hr</u>

TPN recommendation: Suggest two-in-one PN 17.7% dextrose, 5.8% a.a. @ 63 cc/hr with 10% lipids piggyback @ 20 cc/hr

Re-check calculations

TPN recommendation: Suggest two-in-one PN 17.7% dextrose, 5.8% a.a. @ 63 cc/hr with 10% lipids piggyback @ 20 cc/hr 63 cc/hr x 24 = 1512 ml 1512 * (.177) = 268 g D X 3.4 kcals= 911 kcals

1512 * (0.058) = 88 g a.a. x 4 kcals = 35220 cc/hr lipids*24 = 480*1.1 kcals/cc = 528

Sample Calculation 3-in-1

- Nutrient Needs / day:
 - Kcals: 1800, Protein: 88 g Fluid: 2000 cc
- ◆ Lipid : 1800 kcal x 30% = 540 kcal
 - -540 kcal / 10 kcal per gram = 54 g
 - -54 g / 2000 cc x 100 = 2.7% lipid
- Protein: 88 g / 2000 cc x 100 = 4.4% amino acids
- ◆ 88 g x 4 = **352 kcals from protein**

Sample Calculation 3-in-1(cont)

Dextrose: 908 kcal (1800 – 540 - 352)

- -908/3.4 kcal/g = 267 g dextrose
- 267 g / 2000 cc x 100 = 13.4% dextrose solution
- Rate of infusion: Amino Acid / Dextrose/Lipid: 2000 cc / 24hr = 83 cc/hr.

 TPN prescription: Suggest TNA 13.4% dextrose, 4.4% amino acids, 2.7% lipids at 83 cc/hour provides 88 g. protein, 1800 kcals, 2000 ml fluid

		Frequency	
Parameter	Daily	3x/week	Weekly
Glucose	Initially	\checkmark	
Electrolytes	Initially	\checkmark	
Phos, Mg, BUN, Cr, Ca		Initially	\checkmark
TG			\checkmark
Temperature	\checkmark		
Bili, LFTs		Initially	

Inpatient Monitoring PN

		Frequency	
Parameter	Daily	Weekly	PRN
Body Weight	Initially	\checkmark	
Nitrogen Balance		Initially	
HGB, HCT		\checkmark	
Catheter Site	\checkmark		
Lymphocyte Count	Initially		\checkmark
Clinical Status			

PRN : **Pro** – **Re** – **Nata** = **when necessary**

Monitoring: Nutrition **Serum Hepatic Proteins** Time **Parameter** Albumin 19 days **Transferrin** 9 days **Prealbumin** 2-3 days ~12 hours **Retinol Binding Protein**

Osmolarity Quick Calculation

To calculate solution osmolarity:

- ♦ (A). multiply grams of dextrose per liter by 5
- ♦ (B). multiply grams of protein per liter by 10
- ♦ (**C**). add A & B
- add 300 to 400 to the answer from "C".
 (Vitamins and minerals contribute about 300 to 400 mOsm/L.)

Is the solution compoundable?

TPN is compounded using 10% or 15% amino acids, 70% dextrose, and 20% lipids

 The TPN prescription must be compoundable using standard base solutions

 This becomes an issue if the patient is on a fluid restriction

Is the Solution Compoundable?

What is the minimum volume to compound the PN prescription?

Example: 75 g AA 350 g dextrose 50 g lipid 2000 ml fluid restriction

AA: 10 g = 75 g = 750 ml using 10% AA 100 ml X mlOR divide 75 grams by the % base solution, 75 g/ .10

Is the solution compoundable?Dextrose: $70 \text{ g} = 350 \text{ g} \\ 100 \text{ ml} \quad X \text{ ml}$ x = 500 mlLipid: $20 \text{ g} = 50 \text{ g} \\ 100 \text{ ml} \quad x \text{ ml}$ X = 250 ml

Total volume = 750 ml AA + 500 ml D + 250 ml lipid + 100 ml (for electrolytes/trace) = 1600 ml (minimum volume to compound solution)

Tip: Substrates should easily fit in 1 kcal/ml solutions

Is this solution compoundable? AA: 10 g = 125 g = 1250 ml (125 / .10) 100 ml X ml Dextrose: 70 g = 350 g x = 500 ml (350 / .70) 100 ml X ml X = x = 500 ml (350 / .70) x = 100 ml (350 / .70) Lipid: 20 g = 500 g X = 250 ml (50 / .20)

Total volume = 1250 ml AA + 500 ml D + 250 ml lipid + 100 ml (for electrolytes/trace) = 2100 ml (minimum volume to compound solution)

Verdict: not compoundable in 1800 ml.

Action: reduce dextrose content <u>or</u> use 15% AA base solution if available (could deliver protein in 833 ml of 15%)

